Improving PSO-based Multi-Objective Optimization using Crowding, Mutation and -Dominance

نویسندگان

  • Margarita Reyes
  • Carlos A. Coello Coello
چکیده

In this paper, we propose a new Multi-Objective Particle Swarm Optimizer, which is based on Pareto dominance and the use of a crowding factor to filter out the list of available leaders. We also propose the use of different mutation (or turbulence) operators which act on different subdivisions of the swarm. Finally, the proposed approach also incorporates the -dominance concept to fix the size of the set of final solutions produced by the algorithm. Our approach is compared against five state-of-the-art algorithms, including three PSO-based approaches recently proposed. The results indicate that the proposed approach is highly competitive, being able to approximate the front even in cases where all the other PSO-based approaches fail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator

Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...

متن کامل

Particle Swarm Optimisation for Feature Selection in Classification: A Multi-Objective Approach

Classification problems often have a large number of features in the datasets, but not all of them are useful for classification. Irrelevant and redundant features may even reduce the performance. Feature selection aims to choose a small number of relevant features to achieve similar or even better classification performance than using all features. It has two main conflicting objectives of max...

متن کامل

An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design

As there is a growing interest in applications of multi-objective optimization methods to real-world problems, it is essential to develop efficient algorithms to achieve better performance in engineering design and resources optimization. An efficient algorithm for multi-objective optimization, based on swarm intelligence principles, is presented in this article. The proposed algorithm incorpor...

متن کامل

Modeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)

In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...

متن کامل

Non-dominated Sorting and Crowding Distance Based Multi-objective Chaotic Evolution

We propose a new evolutionary multi-objective optimization (EMO) algorithm based on chaotic evolution optimization framework, which is called as multi-objective chaotic evolution (MOCE). It extends the optimization application of chaotic evolution algorithm to multiobjective optimization field. The non-dominated sorting and tournament selection using crowding distance are two techniques to ensu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005